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Abstract. The human body require energy for mechanical activities. This energy is obtained from the food we

eat and they are stored in the human body in chemical form as Carbohydrates, Protein and Fats. In the event

that energy is needed in any part of the body, the chemical energy is transformed into utilizable energy form

as Adenosine Triphosphate (ATP) and transported to places within the cells where they are needed. This is in

some ways similar to the energy generation in the diesel engine of an automobile. In this paper, the mathematical

equation governing the generation of energy in a diesel engine is modified to produce a mathematical model of

energy generation in the mitochondria of human cell. A partial differential equation with boundary conditions,

representing the process of energy generation in the human cell, was obtained. The solution to the integer partial

derivative mathematical model was first obtained using Homotopy Analysis Method (HAM). Surface plots of the

solution obtained by HAM are presented. From the study, the energy generated in the human cells increases with

time as the coefficient of diffusion increases and also whenever the control parameter is in the negative side of

the convergence region. Furthermore, a fractional-time partial derivative model was also formulated by replacing

the integer-time derivative with a fractional derivative in the Caputo sense. The solution to the fractional-time

derivative model was also obtained using the Homotopy Analysis Method (HAM) and surface plot of solution are

also presented. In comparing the integer-derivative model with that of the fractional derivative model, the energy

generated by the integer model seems higher than that of the fractional model. The fractional-time derivative

model is a generalization of the integer derivative model. When α = 1, the solution of the integer and fractional

model coincide. The novelty and contribution of this paper is the formulation of a mathematical model of energy

generation in the mitochondria of human cell through the food we eat. Both integer derivative and fractional

derivative models were formulated. Approximate analytic solutions to both models were obtained using the

Homotopy Analysis Method.
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1 Introduction

For more than three centuries, fractional calculus has been a veritable tool in the analysis
of mathematical models. In recent times, perturbing mathematical models of deterministic
integer order differential equation to models written in terms of fractional order derivatives has
become a popular area of research (Liu et al., 2020; Tuan et al., 2020) and the reference therein.
Fractional order differential equations emanates from fractional order derivatives or integral
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operators. These derivatives or integral operators do not only depend on their current state
but also upon all of their past states. This is due to the nonlocal nature of the fractional order
derivative as oppose to the integer order derivative which is local in nature (Hoan et al., 2020).
The nonlocal nature of fractional derivatives makes these operators very useful and powerful
in evaluating the next state of the system. Thus these operators are more efficient than other
classical deterministic operators in the analysis mathematical models.

Mathematical models of most physical systems involve either ordinary differential equations
(ODE) or partial differential equations (PDEs). In order to know the behavior of the system, the
solutions of the governing differential equations need to be investigated. In this regard, there are
well-known classical methods for obtaining classical solutions, (see Hastings & McLeod (2011))
for details of some classical methods. However, physical systems occurring in nature comprise
of equations with complex geometry for which computation of exact solutions may be difficult
or not even possible. In such cases, analytic, semi-analytic or numerical methods are deployed
to obtain a solution (Chakraverty et al., 2019). Numerical methods have been very useful in the
analysis of models of energy generation in the Engineering field, (Didi et al., 2022; Ghalandari
et al., 2019; Nabipour et al., 2020; Molajou et al., 2021; Jafarian-Namin et al., 2019), and the
references therein.

Fractional differential equations has been applied in various field like physics, biology, medicine,
image processing, optimization, electrodynamics, nanotechnology, biotechnology, and engineer-
ing Kilbas et al. (2006); Kumar et al. (2018); Baleanu et al. (2017); Nasrolahpour (2013); Zhang
et al. (2012); Yi-Fei (2007); Baleanu et al. (2010); Mainardi (2010); Tarasov & Tarasova (2017);
Sun et al. (2018) and the references therein. Converting an integer derivative model to an appro-
priate fractional derivative model may be easy but obtaining a solution to such a model is known
to be very challenging and requires some powerful numerical or analytical techniques. Some of
the techniques used, as seen in the literature, includes but not limited to homotopy perturba-
tion method(HPM) (He, 1999; Yildirim, 2009), Laplace transform method (LTM) (Kexue and
Jigen, 2011), homotopy analysis method(HAM) (Ejikeme et al., 2018; Akinyemi, 2019; Iyiola,
2015), Adomian decomposition method(ADM) (Ray & Bera, 2005), Differential transformation
method(DTM) (Arikoglu and Ozkol, 2007), perturbation-iteration algorithm (Şenol & Dolapci,
2016), iterative Shehu transform method, (Akinyemi & Iyiola, 2020a), residual power series
method (Senol, 2020; Kumar et al., 2016; Ahmad, 2015), and q-homotopy analysis transform
method in (Akinyemi, 2019; Akinyemi & Huseen, 2020; Akinyemi & Iyiola, 2020b; Kumar et al.,
2017).

The energy content of the food we eat exist in chemical form. This chemical energy is stored
in the human body as Carbohydrates, Protein and Fats. Human cells require chemical energy
for metabolic reactions, to transport substances across its membranes and to do mechanical
work, such as moving muscles. When energy is needed in any part of the body, the chemical
energy is transformed into utilizable energy form in the form of Adenosine Triphosphate(ATP)
and transported to places within the cells where they are needed. The ATP is not a storage
molecule for energy but it is an unstable molecules whose bonds are easy to break, making it a
useful source of energy for cells (Otugene, 2012; Hickman et al., 1997).

All energy production begins in the Cytosol (Cytoplasm) of the cell. Here, large molecules are
catabolized into smaller molecules but very little energy is produced. These smaller molecules
are then absorbed and processed in reactions inside the mitochondria. This is known as ATP
Cycle. There are three steps in the generation of energy in the form of ATP in the human
cells. These are: (i) glycolysis (ii) Kreb’s cycle or Citric Acid (TCA)Cycle and (iii) Oxidative
phosphorylation.

Glycolysis is a series of biochemical reactions by which one molecule of six-carbon sugar
glucose is oxidized to form two molecules of three-carbon pyruvic acid, two molecules each of
the energy-carrying molecule ATP and NADH, and two molecules of water. Here, a molecule
of glucose is degraded in a series enzyme-catalyzed reactions to yield two molecules of the three

200



C.L. EJIKEME et al.: FRACTIONAL DERIVATIVE MODEL OF ENERGY GENERATION...

carbon compound pyruvate. In the preparatory phase of glycolysis (that is phase one to five)
two molecules of ATP are invested and two triphosphate are obtained. During the sequential
reactions or payoff phase of glycolysis, some of the free energy released from glucose is conserved
in the form of ATP and NADH. At this phase, four molecules of ATP are produced. Therefore,
glycolysis is the oxidation of glucose to pyruvic acid with some ATP and NADH produced
(Hickman et al., 1997). The overall process of glycolysis is the following reaction equation

Glucose+ 2NAD + 2ADP + 2Pi −→ 2pyruvate+ 2NAD + 2ADP + 2H+ + 2ATP + 2H2O.

In the anaerobic condition(absence of oxygen), homolatic fermentation of pyruvate occurs in
the muscles while under aerobic condition(presence of oxygen), pyruvate is oxidized to acetyl-
CoA(acetyl Coenzymes A) and this reacts with Oxoloacetate to begin the next stage of ATP
production called the Kreb’s cycle or citric acid cycle or tricarboxylic acid cycle. Kreb’s cycle is
the oxidation and decarboxylation of acetylCoA to carbon(iv)oxide with some ATP, NADH and
FADH2 produced. Decarboxylation is the first step in the aerobic process of glucose metabolism.
This and all subsequent steps (citric Acid Cycle and Electron Transport) will occur only when
oxygen is available and takes place inside the mitochondria (Hickman et al., 1997). The equation
of decarboxylation is

2pyruvateacid+ 2NAD+ + 2CoA −→ 2AcetylCoA+ 2CO2 + 2NADH.

Therefore, the Kreb’s Cycle is the part of the aerobic metabolism of glucose which in-
volves eight enzymes reactions occurring in the mitochondrial matrix that reduce the co-enzymes
NAD+ and FAD. Oxidation and decarboxylation reactions occur which catabolize the 6-carbon
citric acid back into a 4-carbon oxaloacetic acid and two carbon dioxide molecules. At the same
time three NAD+ and one FAD are reduced into three NADH and one FADH2 respectively,
and one ATP is produced by substrate level phosphorylation. (Recall, 1 glucose −→ 2 pyruvate
acid −→ 2aceytl, so this cycle runs twice) (Hickman et al., 1997) The net equation for citric
acid cycle is

2AcetylCoA + 6NAD+ + 2FAD + 2ADP + 2Pi+ 4H2O

−→ 2CoA + 6NADH + 2FADH2 + 2ATP + 4CO2 + 4H+.

Oxidative phosphorylation occurs on a membrane, the mitochondrial cristae. It includes the
Electron Transport Chain(ETC)and ATP synthesis. The final stage of Oxidative phosphoryla-
tion generates most of the ATP produced from glucose. Co-enzymes from the previous reactions
pass electrons to a series of electron carrier molecules, which carry out redox reactions resulting
in the chemosmotic generation of ATP (McMurry et al., 1996; Hickman et al., 1997). The net
equation for oxidative phosphorylation is

2NADH(fromglycolysis) + 2NADH(fromDecarboxylation)+

+6NADH(fromCitricAcidCycle) + 2FADH2(from citric Acid Cycle)+

+6O2 + 32ADP + 32Pi −→ 12H2O + 32ATP + 10NAD+ + 2FAD.

The net ATP yield per glucose molecules from complete oxidation of 1 glucose molecule is
30-32 ATP. In general, most eukaryotic cells produces about 36 ATP molecules during aerobic
respiration. The net equation for aerobic respiration which yied most of the energy in form of
ATP is

C6H12O6 + 6O2 + 36ADP + 36P −→ 6CO2 + 6H2O + 36ATP.

The model discussed here tries to describe the change in the volume of ATP, the concentration
of glucose (sugar) and the actual energy release in the cell. Detailed studies on the synthesis
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of ATP in the mitochondria can be found in Ejikeme (2006); Harris & Das (1991); Korla and
Mitra (2014).

In Korzeniewski (1996), introduced a mathematical dynamic model of oxidative phosphory-
lation in isolated hepatocytes incubated with different respiratory substrates. The model showed
the energetic behaviour of the cell during great variations of the respiration rate and proton-
motive force. Computer simulated models of oxidative phosphorylation and Krebs cycle also
been introduced (Korzeniewski, 1998; Korla and Mitra, 2014).

In Ayeni et al. (2005) introduced a model of the energy generation in a combustion en-
gine, in their model they showed that even in a non-homogeneous reaction, the critical Frank-
Kemenetskii parameter increases as the radiation parameter increases when the activation energy
is high. The combustion equations for their models are:

Pg
∂Tg
∂t

= λg
∂2Tg
∂x2

+ CfQfαgAe
−E
R
Tg − 4πRdnd(Tg − T0)− 4πR2

dα1nd(T
4
g − T 4

0 ), (1)

d(R2
d)

dt
= −2λg

ρL
(Tg − T0)−

4πRdσ

Lρ
(T 4
g − T 4

0 ), (2)

αg
∂Cf
∂t

= Df
∂2Cf
∂x2

− CfαgµfAe−
E
R
Tg +

4πRdλgnd(Tg − T0)
Lµgαg

+
4πR2

dσ1nd(T
4
g − T 4

0 )

Lµgαg
, (3)

where together with initial and boundary conditions

Tg(x, 0) = T0, Cf (x, 0) = Cf0 , Rd(0) = Rd0 .

Tg(−1, t) = Tg(1, t) = T,Cf (−1, t) = Cf−1 , Cf (1, t) = Cf1 ,

where T represents Temperature, E is activation energy of the system, L is the liquid evaporation
energy, C is the concentration of reactant. Rd stands for the radius of drop, Q is heat released
per unit mass, Pg is the constant of proportionality, α1 = 2αεd

2−εd , α is Stefan-Bottzman constant,
εd is emissivity of the droplets on surface, µ is the molar mass of reactant, ρ is density, αg is
volumetric phase constant, n is the number of drops per unit volume λ is thermal conductivity,
A is pre-exponential factor, R is the universal gas constant. The subscripts: g represent gas
mixture f represents combustible gas component of the mixture while d is the liquid drops.
Details on the formulation of equations (1) - (3) can be found in the paper (Ayeni et al., 2005).

In Ejikeme et al. (2011), adapted and modified the model of the energy generation in a com-
bustion engine introduced by Ayeni et al. (2005) to produced a model for the energy generation
in the mitochondria of the human cell. This was done by comparing the detailed functioning of
a diesel engine with what happens in the human body or system. Comparing these two process
of energy generation in two different system, they observed some similarities between the two
systems. Motivated by their work, we reformulated their model using fractional derivatives in
the sense of Caputo.

2 The Mathematical Model of Energy Generation in Human
Body by Human Cell

In this section we discuss the derivation of the mathematical model of energy generation in the
mitochondria of human cell as presented and by Ejikeme et al. (2011). We first discussed the
derivation of the integer derivative model and introduced the fractional derivative analogue of
the model. We adopted the Caputo fractional derivative in the fractional model.

2.1 The Integer Derivative model

The living body is a chemical engine and because it is an engine it must like diesel engine ( or
engine of a motor car) be constantly supplied with diesel (or fuel) to keep it working. Such diesel
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needs to be provided by the food we eat, and when it is supplied to the body it is ”Com-busted”
with the oxygen of the air we breathe. The result of this ”Combustion” is the release of the
necessary energy to keep the body alive. This implies that a comparatively good description of
what happens in the human system is the process of energy generation in a diesel engine which
generates the energy that sustains the running of the engine. The diesel engine has a carburetor
(equivalent to the mitochondria) where the diesel is ignited and burnt to release heat energy.
Just like the reaction in the Kreb’s Cycle or Citric Acid cycle and Mitochondria, Oxygen is very
important since we also know that there would be no combustion in the absence of oxygen. The
detailed functioning of a diesel engine is compared here with what happens in the human body.
Comparing these two process of energy generation in two different system, it is found that they
are alike in many ways.

The detailed functioning of a diesel engine is compared here with what happens in the human
body or system. Comparing these two process of energy generation in two different system, it is
found that they are alike in many ways. The energy sources are similar-hydrocarbon. The initial
source of energy to enable subsequent energy generation that sustains the systems was provided
by the glycolytic pathway and the battery respectively. The burning of the sources of energy
(glucose and fuel or diesel) is provided with chambers (mitochondria and carburetor) that are
highly regulated. This is seen by comparing the inflow of glucose (in the form of accetyl CoA)
into the mitochondria which is regulated by the fuel droplets into the carburetor which on its own
is regulated by the metering processes. Based on these similarities in the two systems on their
energy generation processes and requirements, the combustion in the carburetor can be liken to
ATP production in the mitochondria. In their paper, Ejikeme et al. (2011), (see also (Ejikeme,
2006)), adopted and adapted the models describing the non-homogeneous combustion reaction
in the carburetor to the energy generation in the mitochondria with proper modifications to
take care of the nature of the systems (the human cells) involved in the reactions.

Since not much heat is released ordinarily in the human system, the interest is particularly
about equation (2) and (3). These equations are modified to truly reflect and or represent
the system being studied. From biological studies, glycolysis occurs at physiologically constant
temperature which is 370 C. Thus, our term Tg − T0 can simply be represented by T. Also the
activation energy can be taken as a constant since glycolysis is a spontaneous process and does
not require any extra energy order than that present at the initial time. The process generates
subsequent energy it needs to continue the process. Thus, the activation energy in this work
will then be taken as the energy supplied by the glycolytic pathway which is the 2ATP and as
such E is constant per mole of glucose. Since the process occurs in the cell and considering the
nature of the cell, evaporation does not occur so that the liquid evaporation energy is constant
if at all it is required. The reactants in our study here are the sugar (glucose) and oxygen. The
radius of drop can be similarly taken here to mean the volume of the glucose that enters into
reaction which can be measured in mole, thus Rd in equations (2) and (3) is replaced with V.

In the human cell, the thermal conductivity is considered such that its value is zero, although
it is known that excess heat is removed from the body by perspiration or sweating but no external
heat is added. The subscripts appearing in the terms of equations (2) and (3) are neglected since
sugar(glucose) does not appear in gaseous forms. With the above modification on equations (2)
and (3), we arrive at the following equations

d(V 2)

dt
= −4πV σ1T

4

Gρ
, (4)

ν
∂C

∂t
= D

∂2C

∂x2
− CνµΛe

−E
µ
T

+
4πV 2σ1mT

4

Gµν
, (5)

where V = V (t), C = C(x, t), together with initial and boundary conditions

V (0) = V0(constant),
C(x, t) = Ci, atx = ±i, i = 1,
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where V is the volume of glucose that enters into the mitochondria in the oxidized form and
Ci is the concentration of reactants at positions x = ±1. Equations (4) and (5) represent the
model for energy generation in the mitochondria of human cell which were first formulated and
studied by (Ejikeme et al., 2011).

In the current paper, we reformulated the model using fractional derivatives in the sense of
Caputo. We first considered the integer derivative model. For the purpose of the method we
are to use in solving this problem we assume that the boundary are at a position x = 0 and
x = 1. We also assume that the concentration of reactants at the boundaries C(0, t) = 0 and
C(1, t) = c0 (constant). Let Ω = [0, 1]× [0, 2], we considered the following model

d(V 2)

dt
= −4πV σ1T

4

Gρ
, t ∈ [0, 2], (6)

ν
∂C

∂t
= D

∂2C

∂x2
− CνµΛe−

E
RT +

4πV 2σ1mT
4

Gµν
, (x, t) ∈ Ω, (7)

where V = V (t), C = C(x, t), together with initial and boundary conditions

V (0) = V0(constant),
C(0, t) = 0, and C(1, t) = c0, t ∈ [0, 2],

(8)

where V is still the volume of glucose that enters into the mitochondria in the oxidized form as
ATP and c0 is the concentration of reactants at the boundaries.

In the model above, V0 is the initial volume of glucose in the mitochondria in oxidized form as
ATP, c0 is concentration of reactants at the boundary of the membrane at any time. The reaction
that leads to the generation of ATP takes place in the inner membrane of the mitochondria.
From biological point of view, glycolysis occurs at physiologically constant temperature which
is 37◦C. Thus T which denote temperature is constant. The parameter σ1 = 2σε

2−ε , where σ
is the Stefan-Boltzmann constant and ε is the dissociation constant, G is dissociation energy
of the glucose molecules(this is the energy needed to break every chemical bond in glucose
molecule and completely separate all its atoms; the SI units used to describe bond energy are
(kJ/mol)). The number of glucose per unit volume is denoted by m. The volumetric phase
constant is denote by ν, this tells how much a signal is shifted along the x-axis; for example, a
phase constant of Q means that each value of the signal happens Q amount of the time earlier.
In Chemistry and physics, activation energy is the energy which must be available to a chemical
or nuclear system with potential reactants to result in a chemical reaction , nuclear reaction or
various other physical phenomena. It is defined as a least possible (minimum) amount of energy
which is required to start a reaction or the amount of energy available in a chemical system
for a reaction to take place. The activation energy in the form of ATP is denoted by E. Λ
represent the pre-exponential(or frequency ) factor. The pre-exponential factor or constant in

the Arrhenius equation k = Λe−
E
RT is an empirical relationship between temperature and rate

coefficient, k. R denotes the universal gas constant. The quantity µ represent the molar mass
of hydrocarbon, C is concentration of the reactant, D is diffusion coefficient and ρ denotes the
density of glucose, ρ = ν

V .
These equations represent the system being studied. The temperature T is taking to be a

constant. Also the activation energy can be taken as a constant since glycolysis is a spontaneous
process and does not require any extra energy order than that present at the initial time. The
process generates subsequent energy it needs to continue the process. Thus, the activation
energy in this work will then be taken as the energy supplied by the glycolytic pathway which
is the 2ATP and as such E is constant per mole of glucose. Since the process occurs in the cell
and considering the nature of the cell, evaporation does not occur so that the liquid evaporation
energy is constant if at all it is required. The reactants in our study here are the sugar (glucose)
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and oxygen. In the human cell, it is known that excess heat is removed from the body by
perspiration or sweating but no external heat is added.

We remark that the two equations (4) and (5) describe the change in the volume of the
reactants that enters the mitochondria in the oxidized forms over a period of time as well as
the change in the concentration of reactants over a period of time. It is this change in the
concentration of reactants that produces the energy which is transported in the form ATP to
places where they are needed in the human body. In addition, equation (5) also describe the
diffusion of reactants within the inner membrane of the mitochondria. For simplicity, we re-write
equation (5) as

∂C

∂t
− D

ν

∂2C

∂x2
+ µΛe−

E
RT C − 4πσ1mT

4

Gµν2
V 2 = 0, (x, t) ∈ Ω

which simplifies to

∂C

∂t
− k1

∂2C

∂x2
+ k2C − k3V 2 = 0, (x, t) ∈ Ω, (9)

where k1 = D
ν , k2 = µΛe−

E
RT and k3 = 4πσ1mT 4

Gµν2
.

Solving (4) and applying the initial conditions, we get

V0 − V =
2πσ1T

4

Gρ
t. (10)

This implies that V0 > V has a valid result at t > 0. Thus we have that

V = V0 −
2πσ1T

4

Gρ
t = V0 − k4t, where k4 =

2πσ1T
4

Gρ
. (11)

Substituting equation (11) into (9) we get

∂C

∂t
− k1

∂2C

∂x2
+ k2C − k3(V0 − k4t)2 = 0. (12)

Thus the required model describing the unsteady state non-homogeneous combustion reaction
in human body is simplified to

∂C

∂t
− k1

∂2C

∂x2
+ k2C − k3(V0 − k4t)2 = 0, (13)

subject to the boundary condition

C(0, t) = 0, C(1, t) = C0. (14)

At the steady state,

∂C

∂t
= 0 and V 2(t) = V0 (say),

the volume of glucose remain constant so that equation (13) becomes,

k1
∂2C

∂x2
− k2C + k3V0 = 0. (15)
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2.2 The Fractional Derivative Model

All of the models discussed above involve ordinary differential equations with integer order
derivatives. In this paper, the model of energy generation in the mitochondria is reformulated
using fractional order derivatives. That is, we consider the equation (13) where the integer time
and space derivatives involve in the equation are replaced with Caputo type fractional-time and
-space derivatives. The fractional model of energy generation in a human cell studied in this
paper is given as

∂αC

∂tα
− k1

∂2C

∂x2
+ k2C − k3(V0 − k4t)2 = 0, (x, t) ∈ Ω, (16)

subject to the boundary condition

C(0, t) = 0, C(1, t) = c0, (17)

where 0 < α ≤ 1.

By introducing fractional-time derivative, some characteristic behaviour of the system not
captured by the integer case model may be captured in this fractional-time derivative model.
Besides, some measure of chaoticness ( if any) that may occur in the process of energy generation
may be seen in the fractional-time derivative model. The behaviour of the system as α −→ 1
will be examined and compared with the integer derivatives.

For the fractional-time derivative model, the case ∂αC
∂tα = 0 corresponds to the steady state

integer derivative model. However, we are interested in the case where ∂αC
∂tα 6= 0. This is a

non-homogeneous fractional-time differential equation whose solution is to be obtained using
Homotopy Analysis Method (HAM).

3 Introduction to Fractional Calculus

In this section, we recall some of the definitions and results needed from fractional differential
and integral calculus. For more details, the reader can refer to Diethelm & Ford (2002); Poblubny
(1999).

Definition 1. (Diethelm & Ford, 2002) Let n ∈ R+. The operator Jna , defined on L1[a, b] by

Jna f(x) :=
1

Γ(n)

∫ x

a
(x− t)n−1f(t)dt

for a ≤ x ≤ b, is called the Riemann- Liouville fractional integral operator of order n. For n = 0,
we set J0

a := I, the identity operator.

Definition 2. (Diethelm & Ford, 2002) Let n ∈ R+ and m = [n]. The operator Dn
a , defined by

Dn
af := DmJm−na f

is called the Riemann- Liouville fractional differential operator of order n. For n = 0, we set
D0
a := I, the identity operator.

Theorem 1. (Diethelm & Ford, 2002) Let n ≥ 0. Then, for every f ∈ L1[a, b],

Dn
aJ

n
a f = f,

almost everywhere.
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Lemma 1. (Diethelm & Ford, 2002) Let n ≥ 0 and m = [n]. Assume that f is such that both
Dn
∗af and Dn

af exist. Then,

Dn
∗af(x) = Dn

af(x)−
m−1∑
k=0

Dkf(a)

Γ(k − n+ 1)
(x− a)k−n,

where the operator Dn
∗a defined by

Dn
∗af := Dn

a [f − Tm−1[f ; a]]

is called the Caputo differential operator of order n.

Theorem 2. (Diethelm & Ford, 2002) Assume that n ≥ 0, m = [n] and f ∈ Am[a, b]. Then,

JnaD
n
∗af(x) = f(x)−

m−1∑
k=0

Dkf(a)

k!
(x− a)k,

where Am[a, b] is the set of functions with absolutely continuous derivative of order m− 1.

4 Homotopy Analysis Method for Differential Equations

The homotopy analysis method (HAM) is an analytical approximation method for solving linear
and nonlinear ordinary and partial differential equations. It uses the concept of the homotopy
from topology to generate a convergent series solution using the homotopy-Maclaurin series to
resolve the nonlinearities in the equation. This method was first introduced by Liao (1992)
and been used by many authors to solve many types of problems in Science and engineering
(Abbasbandy, 2006; Song & Zhang, 2007; Hetmaniok et al., 2014). The method may be used to
obtain the exact solution or a power series solution which converges, in general, to exact solution.
The HAM consists of parameter ~ 6= 0 which is called the convergence control parameter.
This parameter controls the convergent region and rate of convergence of the series solution
(Chakraverty et al., 2019).

The novelty of the HAM lies in the fact that it does not depend on small or large physi-
cal parameters. Thus, it is applicable to problems with strong nonlinearity. Most traditional
perturbation methods are based on small parameter assumption. However, many nonlinear
problems have no small parameters at all. Besides, the determination of small parameters is a
special techniques. Moreover, these small parameters are so sensitive, in the sense that a small
change in small parameters will affect the results. An appropriate choice of small parameters
leads to ideal results while an unsuitable choice of small parameters may results in bad effects
(Chakraverty et al., 2019). Thus, a method that could bypass the small parameter assumption
is deemed a better method. The HAM also distinguishes itself in that it is a unified method
for the Lyapunov artificial small parameter method, the delta expansion method, the Adomian
decomposition method, Adomian & Adomian (1984) and the homotopy perturbation method
(Liang & Jeffrey, 2009; Sajid & Hayat, 2008). The greater generality of the method often al-
lows for strong convergence of the solution over larger spatial and parameter domains. It also
gives an excellent flexibility in the expression of the solution and how the solution is explicitly
obtained. It provides great freedom to choose the basis functions of the desired solution and
the corresponding auxiliary linear operator of the homotopy. Finally, unlike the other analytic
approximation techniques, the HAM provides a simple way to ensure the convergence of the
solution series.

To illustrate the procedure of applying HAM, we consider the following nonlinear differential
equation

N [u(t)] = 0, (18)
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where N is a nonlinear operator, t denotes the independent variable and u is an unknown
function. By means of HAM, we can construct the zeroth-order deformation equation

(1− q)L[φ(t : q)− u0(t)] = q~H(t)N [φ(t : q)], (19)

where q ∈ [0, 1] is the embedding parameter, ~ 6= 0 is an auxiliary parameter and H(t) denotes
a non-zero auxiliary functions. L, an auxiliary linear operator which possesses the property
L(C) = 0, u0(t) is the initial guess of u(t), φ(t, q) is a function of the homotopy parameter
q ∈ [0, 1]. When the embedding parameter q = 0 and q = 1 equation (19) becomes

φ(t : 0) = u0(t), φ(t : 1) = u(t), (20)

respectively. Thus as q increases from 0 to 1, the solution varies from the initial guess u0(t) to the
solution u(t). This kind of variation is called deformation. For equation (18), one constructs the
homotopy equation involving φ(t : q) (19) which is called the zero-order deformation equation.

With the freedom of choosing the auxiliary parameter ~, the auxiliary function H(t), the
initial approximation uo(t) and the auxiliary linear operator L, we can assume that all of them
are properly chosen so that the solution φ(t : q) of the zeroth-order deformation equation exists
for 0 ≤ q ≤ 1.

Expanding φ(t : q) in Taylor series with respect to q, we have

φ(t : q) = u0(t) +
∞∑
m=1

um(t)qm, (21)

where

um(t) =
1

m!

∂mφ(t : q)

∂qm
|q=0. (22)

The convergence of equation (21) depends upon the auxiliary parameter ~. If it is convergent,
then at q = 1, we have

u(t : 1) = u0(t) +
∞∑
m=1

um(t)

which must be one of the solutions of the original nonlinear equation as proved by (Liao & Tan,
2007). When ~ = −1 and H(t) = 1, (19) becomes

(1− q)L[φ(t : q)− u0(t)] + qN [φ(t : q)] = 0. (23)

The governing equation and the corresponding initial condition of um(t) can be deduced from
the zero-order deformation equation (19). Indeed, if one defines the vectors

ūn = {u0(t), u1(t), · · · , um(t)}

and differentiate the zeroth-order deformation equation (19) m times with respect to q setting
q = 0 and then dividing them by m! we get the so-called mth− order deformation equation
given as

L[um(t)− χmum−1(t)] = ~H(t)Rm(ūm−1), (24)

where

Rm(ūm−1) =
1

m!

∂m−1N [φ(t : q)]

∂qm−1
|q=0 (25)

and

χm =

{
0,m ≤ 1
1,m > 1.

(26)

We remark that since um(t) for m ≥ 1 is governed by the linear equation (24) with linear
boundary conditions that comes from the original problem, one can obtain its solution um(t),
by the means of some symbolic computation software such as Mathematica, Maple and Matlab.
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5 Homotopy Analysis method (HAM) for integer case model of
Energy generation in human body

In this section, we obtain the solution to the integer model of energy generation in mitochondria,
equations (6) - (8), using the Homotopy Analysis Method (HAM). In particular, we solve the
following boundary value problem of unsteady state model of energy generation in the mito-
chondria of human cell using HAM.

∂C
∂t − k1

∂2C
∂x2

+ k2C − k3(V0 − k4t)2 = 0, (x, t) ∈ Ω,

C(0, t) = 0, C(1, t) = c0.

(27)

Following the Homotopy Analysis method, we choose the take the linear operator to be

L[φ(x, t; q)] =
∂2φ

∂x2
,

which satisfies the condition that
L[k1 + k2x] = 0.

The inverse operator is defined as

L−1 =

∫ x

0

∫ s

0
dτds.

The zeroth order deformation equation is given as

(1− q)L[φ(x, t; q)− φ0(x, t; q)] = q~H(x, t)N [φ(x, t; q)], (28)

subject to
φ(0, t) = 0 and φ(1, t) = C0,

where q ∈ [0, 1] and φ0(x, t; q) is the initial guess function. The operator N [φ(x, t; q)] is given as

N =
∂φ

∂t
− k1

∂2φ

∂x2
+ k2φ− k3(V0 − k4t)2.

We remark that when q = 0, the zeroth order deformation equation leads to

φ(x, t; 0) = φ0(x, t; 0),

and when q = 1, it leads to

N =
∂φ

∂t
− k1

∂2φ

∂x2
+ k2φ− k3(V0 − k4t)2 = 0.

This implies that
φ(x, t; 0) = φ0(x, t)

and
φ(x, t; 1) = C(x, t)

which is the solution to the equation

N [φ(x, t; 1)] = 0.

The Taylor series expansion of the function φ(x, t; q) with respect to the embedding parameter
is gives as

φ(x, t; q) = φ0(x, t) +

∞∑
m=1

Cm(x, t)qm, (29)
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where Cm(x, t) = 1
m!

∂mφ(x,t;q)
∂qm

∣∣∣
q=0

.

According to Homotopy Analysis Method, when the linear operator L, the initial approxima-
tion function, φ0(x, t), the auxiliary parameter ~ and the auxiliary function, H(x, t) are chosen
correctly, the series (29) converge for q = 1. So that,

φ(x, t; 1) = φ0(x, t) +
∞∑
m=1

Cm(x, t), (30)

which implies that

C(x, t) = φ0(x, t) +
∞∑
m=1

Cm(x, t)

which will be the solution to the original equation with an appropriate guess function phi0.

The solution C(x, t) can be obtained from the so called mth order deformation equation
which is given as

L[Cm(x, t)− χmCm−1(x, t)] = ~H(x, t)Rm(Cm−1(x, t)), m ≥ 1, (31)

subject to

Cm(0, t) = Cm(1, t) = 0, (32)

where

χm =

{
0, if m ≤ 1
1, if m > 1

and

Rm(Cm−1) =
1

(m− 1)!

∂m−1

∂qm−1
N [φ(x, t; q)]

∣∣∣∣
q=0

=
∂

∂t
Cm−1 − k1

∂2

∂x2
Cm−1 + k2Cm−1 − (1− χm)k3(V0 − k4t)2.

Following the procedure of HAM, we chose the auxiliary function H(x, t) = 1, the initial guess
function phi0(x, t) = c0 and apply the inverse operator, L−1, on the mth order deformation
equation to get

Cm(x, t) = χmCm−1(x, t) + ~L−1 [Rm(Cm−1(x, t))]

= χmCm−1(x, t)

+~
∫ x

0

∫ s

0

[
∂

∂t
Cm−1 − k1

∂2

∂x2
Cm−1 + k2Cm−1 − (1− χm)k3(V0 − k4t)2

]
dτds

+c1 + c2x, (33)

where c1 c2 are constants to be determined.

Applying the initial conditions (32), we get

c1 = −χmCm−1(0, t) and

c2 = χmCm−1(0, t)

−~
∫ 1

0

∫ s

0

[
∂

∂t
Cm−1 − k1

∂2

∂x2
Cm−1 + k2Cm−1 − (1− χm)k3(V0 − k4t)2

]
dτds

−χmCm−1(1, t),
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so that the solution of the mth order deformation equation becomes

Cm(x, t) = χmCm−1(x, t)

+~
∫ x

0

∫ s

0

[
∂

∂t
Cm−1 − k1

∂2

∂x2
Cm−1 + k2Cm−1 − (1− χm)k3(V0 − k4t)2

]
dτds

−χmCm−1(0, t) + [χmCm−1(0, t)− χmCm−1(1, t)]x

−~x
∫ 1

0

∫ s

0

[
∂

∂t
Cm−1 − k1

∂2

∂x2
Cm−1 + k2Cm−1 − (1− χm)k3(V0 − k4t)2

]
dτds.(34)

Thus the solution to the original equation (27) is

C(x, t) = φ0(x, t) +
∞∑
m=1

Cm(x, t)

= c0 +
∞∑
m=1

Cm(x, t). (35)

6 Convergence of HAM solution

In this section, the convergence of the HAM solution in (35) for order m = 5, is discussed. The
convergence of the HAM solution depend on the control parameter ~. In this regard we plot
~-curve with appropriate values assigned to the constants and parameters associated with the
model.

Values of Parameters of the model for numerical computations

In order to display the results graphically, a few reasonable assumptions were made regarding
the values of data used in plotting the graphs. However, some of the data were calculated using
standard equations as obtained from experimental results found in the literature.

For the purpose of this study, the rate constants for all reactions has been assumed to be 1
(i.e. k =1), since rate constants varies depending on the temperature and other experimental
conditions. The dissociation constant,ε, for glucose is obtained experimentally and it varies
according to the complexities in the reaction. Thus we assumed a value of 0.069mM for the
purpose of this research. The density of glucose is known to be 1.56g/cm3 while the volume of
glucose that enters the mitochondria V is assumed to be 4.375×10−8cm3 , so that the volumetric
phase constant ν = ρV = 6.28 × 10−8. The number of glucose per unit volume, m, is assume
to be 2. The universal gas constant is given as 8.314472J/mol K. The temperature is take to
be 37◦C(310.15K). The Pre-exponential factor Λ is a factor that is determined experimentally,
as it varies with different reactions, thus we assume it to be 2. The molar mass of hydrocarbon
µ = n(C) ∗ 12.010107 + n(H) ∗ 1.00794 where n(C) is the number of carbon atoms in the
hydrocarbon molecule and n(H) is the number of hydrogen in the hydrocarbon molecule. Thus
the molar mass of hydrocarbon µ is taken to be 84.1559224. The activation energy E ≈ 1787.44J

which is calculated using the Arrhenius equation k = Λe−
E
RT , where k is the rate constant, A

is the pre-exponential factor, correlating with the number of properly-oriented collisions, E
is the activation energy, R is the universal gas constant and T is the temperature in Kelvin.
Dissociation energy of Glucose, G(The energy needed to break all chemical bonds in Glucose)is
obtained from the bond energy of each bound type associated with glucose. The table below
(figure 1 ) shows the figures for the various bond type.
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Figure 1: Bounding Molecules and Bound Energies for glucose

The ~-curves

The ~-curves for different values of the coefficient of diffusion term, at 5th order approximation
and at x = 0.2, t = 2 is shown in figure 2. According to (Liao, 2003) see also (Mastroberardino,
2011), the interval of convergence is determined by the flat portion of the ~-curve. From Figure
2 the admissible interval of convergence that is common to all the curves considered is [−1, 0)∪
(0, 1].

Figure 2: ~ - Curves for different values of D at x = 0.2 t = 2

7 Numerical Example and Surface plots of HAM solution

In order to practically illustrate the method discussed above, we consider the following example:
∂C
∂t − k1

∂2C
∂x2

+ k2C − k3(2− k4t)2 = 0, (x, t) ∈ Ω

C(0, t) = 0, C(1, t) = 2,

(36)

where, in particular, we take (k1, k2, k3, k4) = (0.3205, 157.1896, 0.000482, 0.0158). We obtain an
approximate HAM solution, sketch it surface plot and compute its error function.

Following HAM technique, we choose the auxiliary control parameter ~ = −1 and the diffu-
sion coefficient D = 1

2 , so the solution to the BVP (36) is given as follows:

C1(x, t) = (0.000241(0.0158t− 2.0)2 − 157.0)x2 − (0.000241(0.0158t− 2.0)2 − 157.0)x.

C2(x, t) = 1.32x2(0.000241(0.0158t− 2.0)2 − 157.0)− x(0.0000000101t+ 0.00323(0.0158t− 2.0)2 − 2111.0)

−x(2.41e− 4(0.0158t− 2.0)2 − 157.0)− 1.0x4(1.01e− 8t+ 0.00316(0.0158t− 2.0)2 − 2066.0)

+1.0x3(2.01e− 8t+ 0.00631(0.0158t− 2.0)2 − 4122.0) · · ·
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These approximate solutions were obtained using the symbolic tool of MATLAB. More solution
were obtained and used in plotting the graphs. The solution of the BVP, up to order N, is
therefore gives as

CN (x, t) = C1 + C2 + C3 + · · ·+ CN =

N∑
i=1

C1(x, t). (37)

This is given as

CN (x, t) = 0.75x4(−0.00000519t2 + 0.00131t+ 13500)− 0.5x6(−0.0000248t2 + 0.00628t+ 64700)

−x2(−0.0000203t2x8 + 0.000101t2x7 + 0.0000498t2x6 − 0.000808t2x5 − 0.0000269t2x4

+0.00334t2x3 + 0.00000314t2x2 − 0.00671t2x− 0.000000445t2 + 0.00513tx8 − 0.0257tx7

−0.0126tx6 + 0.204tx5 + 0.0068tx4 − 0.843tx3 − 0.000795tx2 + 1.7tx+ 0.0000113t

+52900x8 − 264000x7 − 130000x6 + 2110000x5 + 70100x4 − 8690000x3 − 8199.0x2

+17500000x+ 116.0)− 5.0x(0.000241(0.0158t− 2.0)2 − 157.0)

−4.0x(0.0000000101t+ 0.00323(0.0158t− 2.0)2 − 2111.0) · · ·

The surface plot of the solution by HAM at different values of ~ and D are shown in figures 3
and 4.

Figure 3: Surface plots of HAM solution for ~ = −1 and different values of diffusion coefficient, D

This figure shows that the energy generated in the human cell increases with time to a
maximum value when the rate of diffusion ( a measure of usage by the cell) is positive and then
begins to decreases as it is being used to do work. When the rate of diffusion is negative then
no energy is produced.
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Figure 4: Surface plots of solution obtained using HAM for ~ = −0.5, 0, 5 and D = 0.5, 6.

This figure shows that the energy generated in the human cell increases with time to a
maximum value and then begins to decreases as it is being used to do work in the cell.

7.1 Error Control Using the Residual

In this section we discuss the error in the HAM solution obtained. It is usually very necessary to
compute the error associated with approximate analytic solutions as this will indicate how the
approximate solution deviates from the true solution. In the case where the exact solution is not
available and cannot be obtained as in this case, the direct computation of error becomes difficult.
However, the residual of the solution can be compute to show how far the approximated solution
differ from the true or exact solution. Hence, one measure of the error in an approximation is
given by computing the residual errors at each point.

One of the advantages of applying the homotopy analysis method(HAM) is that it gives us
a way to control the convergence of solutions by choosing appropriate control parameters and
auxiliary functions that would minimize error in approximate solution. It is, however, difficult
to determine the error minimizing control parameters directly (Van Gorder, 2012).

The residual function for the solution (37) at each point (x, t) ∈ Ω, is given as

Res(x) =
∂CN
∂t
− k1

∂2CN
∂x2

+ k2CN − k3(2− k4t)2, (38)

and the squared residual error is given as

EN (~) =

∫ 1

0
(Res(x))2dx. (39)

The figure below (5) shows the plot of residual error for the case when t=2, D =6 and
~ = 0.1. The values are given in (1)
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Table 1: Table showing the values of residual error for HAM solution

x ~
0.00 0.00096598840

0.01 0.00096598880

0.02 0.00096598920

0.53 0.00096599780

0.95 0.00096599020

0.98 0.00096598920

0.99 0.00096598880

1.00 0.00096598840

Figure 5: Plot of the Residual error of HAM solution for ~ = −0.1 and diffusion coefficient, D = 6

.

8 Solution of Fractional Derivative model via HAM

In this section we obtain the solution to the time-fractional derivative model of energy gener-
ation in mitochondria. The fractional derivative operator use in this is the Caputo fractional
derivative, which has been defined above. Using the Homotopy Analysis Method we obtain an
analytic solution to the equation (16) - (17). Consider the boundary value problem

∂αC
∂tα − k1

∂2C
∂x2

+ k2C − k3(V0 − k4t)2 = 0, α ∈ (0, 1]

C(0, t) = 0, C(1, t) = c0.

(40)

In order to use HAM, we choose the linear operator to be

L[φ(x, t; q)] =
∂2φ

∂x2
= D2.

The inverse operator is defined as

L−1 =

∫ x

0

∫ s

0
dτds.
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The zeroth order deformation equation is given as

(1− q)L[φ(x, t; q)− φ0(x, t; q)] = q~H(x, t)N [φ(x, t; q)], (41)

where q ∈ [0, 1] and φ0(x, t; q) is the initial guess function. The operator N [φ(x, t; q)] is given as

N =
∂αC

∂tα
− k1

∂2C

∂x2
+ k2C − k3(V0 − k4t)2

subject to
φ(0, t) = 0 and φ(1, t) = φ0.

Note that when q = 0, the zeroth order deformation equation leads to φ(x, t; q) = φ0(x, t; q)
and when q = 1, it leads to

∂αC

∂tα
− k1

∂2C

∂x2
+ k2C − k3(V0 − k4t)2 = 0.

This implies that φ(x, t; 0) = φ0(x, t) and φ(x, t; 1) = C(x, t) which is the solution to the equation

N [φ(x, t; 1)] = 0.

On setting the initial approximation function to be φ0(x, t) = C0, the solution to the bound-
ary value problem (40) can be expressed in Taylor series as

φ(x, t; 1) = C0(x, t) +
∞∑
m=1

Cm(x, t), (42)

which implies that

C(x, t) = C0(x, t) +
∞∑
m=1

Cm(x, t)

which converges when the linear operator L, the initial approximation function, φ0(x, t), the
auxiliary parameter ~ and the auxiliary function, H(x, t) are chosen correctly.

The solution C(x, t) is obtained from the mth order deformation equation

L[Cm(x, t)− χmCm−1(x, t)] = ~H(x, t)Rm(Cm−1(x, t)), m ≥ 1 (43)

subject to the boundary condition

Cm(0, t) = Cm(1, t) = 0, (44)

where

Rm(Cm−1) =
1

(m− 1)!

∂m−1

∂qm−1
N [φ(x, t; q)]

∣∣∣∣
q=0

=
∂α

∂tα
Cm−1 − k1

∂2

∂x2
Cm−1 + k2Cm−1 − (1− χm)k3(V0 − k4t)2.

We chose the auxiliary function H(x, t) = 1 and apply the inverse operator, L−1, on the mth

order deformation equation to get

Cm(x, t) = χmCm−1(x, t) + ~
∫ x

0

∫ s

0

[Rm(Cm−1(τ, t))] dτ(ds)

= χmCm−1(x, t)

+~
∫ x

0

∫ s

0

[
∂α

∂tα
Cm−1 − k1

∂2

∂x2
Cm−1 + k2Cm−1 − (1− χm)k3(V0 − k4t)2

]
dτds

+c1 + c2x, (45)
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where the constants c1 and c2 are obtained by applying the initial conditions (44) to get

c1 = −χmCm−1(0, t) and

c2 = χmCm−1(0, t)

−~
∫ 1

0

∫ s

0

[
∂

∂t
Cm−1 − k1

∂2

∂x2
Cm−1 + k2Cm−1 − (1− χm)k3(V0 − k4t)2

]
dτds

−χmCm−1(1, t).

Thus the we have

Cm(x, t) = χmCm−1(x, t) + ~
∫ x

0

∫ s

0

[Rm(Cm−1(τ, t))] dτ(ds)

= χmCm−1(x, t)

+~
∫ x

0

∫ s

0

[
∂α

∂tα
Cm−1 − k1

∂2

∂x2
Cm−1 + k2Cm−1 − (1− χm)k3(V0 − k4t)2

]
dτds

−χmCm−1(0, t) + [χmCm−1(0, t)− χmCm−1(1, t)]x

−~x
∫ 1

0

∫ s

0

[
∂α

∂tα
Cm−1 − k1

∂2

∂x2
Cm−1 + k2Cm−1 − (1− χm)k3(V0 − k4t)2

]
dτds. (46)

The solution to the original equation (40) is therefore given as

C(x, t) = c0 +

∞∑
m=1

Cm(x, t). (47)

9 Graphical Display of HAM solution for Fractional Derivative
Model

In order for the series solution obtained by HAM to converge, the auxiliary control parameter
must be chosen within the region of convergence of the solution. The admissible region of
convergence is usually the flat region in the ~-curve. The ~-curve for the fractional -time model
at order 3 approximation and at x = 0.2, t = 2 and α = 0.5 is shown in figure 6(a). From the
graph, the admissible region of convergence is [−1.26, 0)∪ (0, 1.08]. From this interval a suitable
optimal value is chosen that guarantees the convergence of the solution obtained by HAM.

As in the case for integer derivative model, we choose the auxiliary control parameter ~ = −1
(since −1 is in the interval of convergence) and consider an BVP with diffusion coefficient D = 1

2 .
Substituting these values into a MATLAB program yield the following analytic approximate
solution.

C0(x, t) = 2

C1 = 0.0000000603t2x2 − 0.0000000603t2x− 0.0000153tx2 + 0.0000153tx− 157.0x2

+157.0x+ 2.0

C2 = 2422.0x+ 0.00000014t2x2 + 0.00000158t2x3 − 88.7t(1/2)x2 − 0.00000079t2x4

+59.1t(1/2)x3 − 0.00000574t(3/2)x2 + 0.00000382t(3/2)x3 + 0.000000182t(5/2)x2

−0.000000121t(5/2)x3 + 0.000235tx− 0.0000354tx2 − 0.00000093t2x− 0.00040tx3

+29.6t(1/2)x+ 0.00020tx4 + 0.00000191t(3/2)x

−0.00000605t(5/2)x− 365.0x2 − 4122.0x3 + 2066.0x4 + 4.0

More solutions were are obtained using MATLAB and the corresponding plot of the solution
by HAM is shown in figure 6(b)
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Figure 6: Surface plots of solution obtained using HAM for ~ = −0.5, 0, 5 and D = 0.5, 6.

This figure shows that the energy generated in the human cell increases with time to a
maximum value and then begins to decreases as it is being used to do work in the cell.

10 Discussions and Results

A mathematical model of energy generation in human cell was introduced and studied. An
approximate analytic solution to the integer order model was obtained using the Homotopy
analysis Method(HAM). Surface plots of the solution obtained is presented in figures 3, and 4
for different values of the diffusion coefficient and convergence control parameter. As shown in
the plots, the concentration of glucose increases as long as the control parameter stays within the
range [−1, 0). This range serves as the appropriate range of convergence of the solution obtained
using the HAM. Outside the convergence range, the solution is no longer physically realistic.

As seen from the plots, the concentration of energy generated represented by C(x, t) increases
with time until it gets to a maximum level and then decreases which is an indication of usage
of the energy by the cells to do work. The higher the coefficient of diffusion the more energy is
generated.

The fractional-time model shows a similar result. However, in comparison with the integer
partial derivative model, the energy generated using the integer model is higher than that
generated by the fractional-time model. this is an advantage of the integer model over the
fractional-time model. The cause of this lower energy generation may be attributed to the
natural and well known chaotic behaviour of fractional models. The lower energy generated
may also be due to the fewer number of approximation of the solution obtained.

11 Conclusion

The integer and fractional-time derivative models of energy generation in human body has been
studied and the solution to the given models were obtained using Homotopy Analysis Method.
The research shows that the amount of glucose intake that enters into the body system moves
into the mitochondria matrix in oxidized form at a distance very small depending on the initial
volume and concentration of glucose supplied to the blood and cells. In the mitochondria, energy
in form of ATP is being generated depending on the position of interest and much as work that
is being done by body system. The volume of the glucose in the mitochondria cortex and the
energy generated in the form of ATP reduce with time.

The novelty in this research is the application of fractional derivative to the investigation of
the generation of energy in human body by human cells. Moreover, the application of the novel
Homotopy Analysis Method to fractional partial differential equation is also worthy of note.
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